

FACULTY OF ENGINEERING & TECHNOLOGY

First Year Master of Engineering

Semester II

Course Code: 102430204

Course Title: Biomedical Signal Processing

Type of Course: Program Elective III

Course Objectives: To provide knowledge and methodology for extracting useful information from a biomedical signal and to learn basic and advanced signal processing and pattern classification techniques on different biomedical signals like ECG, EEG, and EMG etc.

Teaching & Examination Scheme:

Contact hours per week			Course	Examination Marks (Maximum / Passing)				
Locturo	Tutorial	Practical	Credits	Internal		External		Tatal
Lecture	Tutorial			Theory	J/V/P*	Theory	J/V/P*	Total
3	0	2	4	30 / 15	20 / 10	70/35	30/15	150 / 75

* J: Jury; V: Viva; P: Practical

Detailed Syllabus:

Sr.	Contents	Hours
1	Introduction To Biomedical Signals: Nature and types of Biomedical Signals- action	05
	potential, electrocardiogram (ECG), electroencephalogram (EEG), electromyogram	
	(EMG), electrogastrogram (EGG), electrooculogram (EOG), electroretinogram	
	(ERG); Objectives of Biomedical Signal Analysis.	
2	Filtering Techniques For Biomedical Signals: Types of digital filters, The z-plane	07
	and pole-zero plots, The rubber membrane concept; FIR filters- Smoothing filters,	
	derivative filters, Notch filters, Window design; IIR filters, Integer filters, Adaptive	
	filters, Signal averaging.	
3	The Cardiovascular System And Ecg Signal Processing: Electrical activity of heart,	09
	ECG leads and recording system, Heart rhythms, Heartbeat morphologies, Noise	
	and artifacts in ECG; ECG Signal Processing- baseline wander removal, powerline	
	interference removal, QRS detection- differentiation and template matching	
	techniques, Pan-Tompkins algorithm; P and T wave detection	
4	The Nervous System And Eeg Signal Processing: The nervous system, EEG rhythms	09
	and waveforms, EEG recording techniques, EEG applications- epilepsy, sleep	
	disorders, brain-computer interface (BCI); EEG Signal Processing- artifacts in EEG,	
	artifact cancellation using reference signals, The auto-regressive (AR) and auto-	
	regressive moving average (ARMA) models.	
5	Advanced Biomedical Signal Processing Techniques: Multi-resolution analysis	09
	(MRA) and Wavelets, Pattern classification- Supervised and Unsupervised	
	classification, Neural networks, Support vector machines.	

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks				y Mark	S	R: Remembering; U: Understanding; A: Application,
R	U	Α	Ν	Ε	С	N : Analyze; E : Evaluate; C : Create
15%	15%	15%	10%	10%	05%	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

1	Lesli Cromwell, F J Weibell, Erich Pfeiffer , "Biomedical Instrumentation and Measurements", PHI
2	Willis J Tompkins, "Biomedical Digital Signal Processing", PHI
3	Rangraj M. Rangayyan , "Biomedical Signal Analysis", John Wiley & Sons
4	Sornmo and Pablo Laguna , "Bioelectrical Signal Processing in Cardiac and Neurological Applications", Leif Elsevier Academic Press

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage				
CO-1	To understand human physiological system and generation and	25				
	acquisition of various biomedical signals.					
CO-2	To understand basic and advanced digital filtering and signal processing 25					
	techniques for biomedical signals					
CO-3	The student will be able to model biomedical systems.	20				
CO-4	To implement advanced signal processing and pattern classification	30				
	techniques for biomedical signals					

List of Practical / Tutorials:

1	Filter the noisy ECG signal using different filters realized through MATLAB or suitable			
	software			
2	Develop a MATLAB program to perform synchronized averaging.			
3	Develop different methods for selecting QRS complex from the ECG signal.			
4	Develop an algorithm to remove power line interference from ECG signal			
5	Select QRS complex from the ECG signal for use as the template and use a suitable threshold			
	on the cross-correlation function for beat detection			
6	Design an adaptive/ Wiener filter to remove the artifacts in the ECG signal			
7	Implement machine learning algorithm on ECG signal			
8	Compute the PSD, kurtosis, skewness of the EEG signal			
9	Implement algorithm on EEG signal to identify various EEG rhythms			
10	Implement Support Vector Machine for biomedical data analysis			

Supplementary learning Material:

1 NPTEL website

Curriculum Revision:			
Version:	1		
Drafted on (Month-Year):	Apr-20		
Last Reviewed on (Month-Year):	Jul-20		
Next Review on (Month-Year):	Apr-22		